Combining Philosophers

All the ideas for Penelope Maddy, Mark Sainsbury and John Mayberry

expand these ideas     |    start again     |     specify just one area for these philosophers


99 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There is a semi-categorical axiomatisation of set-theory [Mayberry]
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
New axioms are being sought, to determine the size of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensional sets are clearer, simpler, unique and expressive [Maddy]
The Axiom of Extensionality seems to be analytic [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
Infinite sets are essential for giving an account of the real numbers [Maddy]
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
A large array of theorems depend on the Axiom of Choice [Maddy]
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
Limitation of size is part of the very conception of a set [Mayberry]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
It is best to say that a name designates iff there is something for it to designate [Sainsbury]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions may not be referring expressions, since they can fail to refer [Sainsbury]
Definite descriptions are usually rigid in subject, but not in predicate, position [Sainsbury]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
Completed infinities resulted from giving foundations to calculus [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
A natural number is a property of sets [Maddy, by Oliver]
Unified set theory gives a final court of appeal for mathematics [Maddy]
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Sets exist where their elements are, but numbers are more like universals [Maddy]
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
Maybe applications of continuum mathematics are all idealisations [Maddy]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
If 'red' is vague, then membership of the set of red things is vague, so there is no set of red things [Sainsbury]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
7. Existence / E. Categories / 2. Categorisation
We should abandon classifying by pigeon-holes, and classify around paradigms [Sainsbury]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague concepts are concepts without boundaries [Sainsbury]
If concepts are vague, people avoid boundaries, can't spot them, and don't want them [Sainsbury]
Boundaryless concepts tend to come in pairs, such as child/adult, hot/cold [Sainsbury]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
A new usage of a name could arise from a mistaken baptism of nothing [Sainsbury]
19. Language / B. Reference / 5. Speaker's Reference
Even a quantifier like 'someone' can be used referentially [Sainsbury]
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Things are thought to have a function, even when they can't perform them [Sainsbury]